

Sub-10 nm Diameter InGaAs Vertical Nanowire MOSFETs

<u>X. Zhao</u>, C. Heidelberger, E. A. Fitzgerald, W. Lu, A. Vardi, and J. A. del Alamo

Microsystems Technology Laboratories,

Massachusetts Institute of Technology

Outline

Motivation

- Process technology
- Device electrical characteristics

Conclusions

Vertical NW MOSFETs: ultimate scalable transistor

State-of-the-art VNW MOSFETs: Si/Ge

Peak g_m of Si and Ge VNW MOSFETs ($V_{ds} = 1-1.2 V$)

• D = 18 nm devices demonstrated

State-of-the-art VNW MOSFETs: InGaAs

Peak g_m of InGaAs (V_{DS} =0.5 V), Si and Ge VNW MOSFETs

• InGaAs competitive with Si

State-of-the-art VNW MOSFETs: InGaAs

Peak g_m of InGaAs (V_{DS} =0.5 V), Si and Ge VNW MOSFETs

- InGaAs competitive with Si
- Need to demonstrate VNW MOSFETs with D<10 nm 6

InGaAs vertical nanowires @ MIT

RIE

Key enabling technologies:

- RIE = $BCl_3/SiCl_4/Ar$ chemistry
- Digital Etch (DE) = self-limiting O₂ plasma oxidation + H₂SO₄ or HCl oxide removal
- Radial etch rate=1 nm/cycle
- Sub-20 nm NW diameter
- Aspect ratio > 10
- Smooth sidewalls

Zhao, IEDM 2013 Zhao, EDL 2014 Zhao, IEDM 2014

Challenge for sub-10 nm VNW: mechanical stability

Lu, EDL 2017

Difficult to reach 10 nm VNW diameter due to breakage

8 nm InGaAs VNWs: Yield = 0%

Water-based acid is problem:

Surface tension (mN/m):

- Water: 72
- Methanol: 22
- IPA: 23

Solution: *alcohol-based digital etch?*

Alcohol-Based Digital Etch

8 nm InGaAs VNWs after 7 DE cycles: Lu, EDL 2017

10% HCl in DI water Yield = 0% 10% HCl in IPA Yield = 97%

Radial etch rate: 1.0 nm/cycle

Radial etch rate: 1.0 nm/cycle

Alcohol-based DE enables D < 10 nm

D=5.5 nm VNW arrays

10% H₂SO₄ in methanol

Lu, EDL 2017

90% yield

- H₂SO₄:methanol yields 90% at D=6 nm!
- Viscosity matters: methanol (0.54 cP) vs. IPA (2.0 cP) 11

Toward sub-10 nm InGaAs VNW MOSFETs

New element: H₂SO₄:methanol DE

D = 15 nm Mo-contacted device

Single nanowire MOSFET:

- $D = 15 \text{ nm} \& L_{ch} = 80 \text{ nm}$
- $S_{lin} = 69 \text{ mV/dec}$
- $2.5 \text{ nm Al}_2\text{O}_3 \text{ (EOT = 1.25 nm)}$
- 300 °C N₂ RTA, 1 min

Diameter scaling of Mo devices

• R_{on} skyrockets with D \downarrow

Challenge for sub-10 nm VNW: top contact

Solution: *alloyed contacts?*

Ni contacted D = 7 nm MOSFET

16

Ni contacted D = 7 nm MOSFET

- $D = 7 \text{ nm } \& L_{ch} = 80 \text{ nm}$
- $2.5 \text{ nm Al}_2\text{O}_3 \text{ (EOT = 1.25 nm)}$
- 200 °C FGA, 1 min
- $I_{on} = 350 \ \mu A / \mu m @ V_{DD} = 0.5 \ V \& I_{off} = 100 \ n A / \mu m$

17

Output characteristics vs. D

Diameter scaling of Ni vs Mo devices

Excellent $g_{\rm m}$ & $I_{\rm on}$ scaling with D for Ni devices

Benchmarking

High performance and good electrostatics

Benchmarking

- First sub-10 nm diameter VNW transistor of any kind
- Record performance

Conclusions

- First sub-10 nm diameter VNW transistors of any kind in any material system
- Key technologies: alcohol based DE + Ni alloyed contact
- Record performance demonstrated
- Top contact: key challenge for VNW MOSFET technology

Appendix

Ni contact for sub-10 nm InGaAs VNW MOSFETs

New elements: H₂SO₄:methanol DE + Ni alloyed contact

Effect of RTA

 $\begin{array}{c}
200 \\
150 \\
50 \\
0 \\
No RTA 250 C 300 C 350 C \\
T (K)
\end{array}$

- Performance for Ni devices ↓ then ↑ with ↑ T
- Refractory metal Mo contact \rightarrow thermal stability

D = 30 nm Mo-contacted device

Diameter scaling: electrostatics

- DIBL degradation likely due to top contact
- Narrowest working device is 15 nm for Mo

Diameter scaling: performance

Excellent g_m & I_{on} scaling with D for Ni devices

Acknowledgement

- NSF E3S, Lam Research and SRC for funding
- Fabrication facility at MIT labs: MTL, SEBL
- MIT colleagues: W. Chern, T. Yu, L. Xia, D. Antoniadis, J. Hoyt
- E3S colleagues: E. Yablonovitch, M. Wu, M. Eggleston, A. Lakhani